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Research on Fractal Model of Load Distribution and Axial
Stiffness of Planetary Roller Screw Mechanism Considering
Surface Roughness and Friction Factor
Xing Du,* Bingkui Chen, Rongrong Liu, and Chaoyang Li

The effects of surface roughness and material properties of the planetary
roller screw mechanism (PRSM) on the axial stiffness and load distribution
are rarely studied. In this paper, the load distribution model is presented by
incorporating into friction factor and surface microtopography. The
microcontact model is built by considering elastic and plastic regimes to
calculate the total actual contact area. Moreover, the load distribution model is
modified by introducing surface microcontact coefficient. Then, the influences
of the nut position, fractal dimension, fractal roughness, friction factor, axial
load, and material yield strength on the axial stiffness and load distribution
are studied in detail. The numerical results show that the axial stiffness rises
with the increment of the nut position, axial load, fractal dimension, and yield
strength, and reduces with the fractal roughness and friction factor
increasing. In addition, the uniformity of the load distribution increases with
the increment of the fractal roughness, and drops with the increase of the
fractal dimension and material yield strength. This investigation lays the
foundation for the design, manufacturing, and use of the PRSM.

1. Introduction

The planetary roller screw mechanism (PRSM), as a key linear
transmission component of electromechanical system, has been
widely used in aircrafts,[1,2] weaponry, telecommunication satel-
lites, robots, and petrochemical industries because of its advan-
tages such as high precision, high load ratio, high reliability, and
high stability. These characteristics are affected by contact stiff-
ness and contact load distribution. In fact, the differences, de-
rived from machining methods, manufacturing accuracies, heat
treatment methods, and surface wear, play an important role in
the axial stiffness and load distribution. These differences result
in the variations of the surface topography and material prop-
erties, while the effects of these on the axial stiffness and load
distribution have been almost ignored in the past.
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A large number of studies on the axial
stiffness and load distribution have been
carried out in the past 20 years. For load
distribution analysis, Zhang et al.[3,4] pro-
posed an efficient model to compute load
distribution over threads of the PRSM con-
sidering the effect of the pitch deviation,
and presented an effective method that the
roller threads were redesigned. The results
showed it was beneficial to achieve even
load distribution to a certain extent. Du
et al.[5] proposed the modeling approach of
the load distribution by incorporating the
axial load, radial load, and machining er-
ror, and revealed that the contact force pe-
riodically changed as the increase of the
thread number as the PRSM was subjected
to the radial load. For axial stiffness analysis,
Jones and Velinsky[6] presented a stiffness
model by the direct stiffness method and
estimated the contact forces over threads
and the overall stiffness of the PRSM. Abevi

et al.[7] proposed a numerical model of the inverted PRSM
(IPRSM) to estimate the axial stiffness and load distribution. The
results revealed that the load distributions over threads were un-
even and the static behavior of the IPRSM was affected by the
configurations. Abevi et al.[8] proposed a nonlinear contact model
by using the equivalent bar, beam, and nonlinear spring in order
to compute the contact forces over threads and axial stiffness. The
results revealed that the load types were vital to the load distribu-
tion.Ma et al.[9] proposed an analyticalmodel of the axial stiffness
by considering the Hertz contact deformation, screw shaft defor-
mation, and thread deformation, and an accuracy coefficient was
incorporated into the model. The results revealed that the axial
load and nut position played a significant role on the axial stiff-
ness.
The above investigations have paved the foundation for static

analysis of the load distribution and axial stiffness, but the surface
roughness and material property are not considered. The surface
morphology and material property had an important influence
on the contact stiffness and contact force, which were investi-
gated in the spherical pump,[10] mechanical joint,[11] and spur
gear.[12] In these works, the fractal theory was applied in com-
puting the contact load and contact stiffness, because the rough
surface morphology was characterized by the fractal functions.
These functions were continuity,[13] nondifferentiability,[14] and
self-affinity[15] so that it can be very close to the actual microto-
pography of the thread surface. However, the relation among the
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contact stiffness, contact load, and surface morphology are diffi-
cult to be established. Zhao et al.[12] proposed an improvedmodel
of the spur gear by considering the effect of the surface roughness
in order to compute time-varyingmesh stiffness and load sharing
ratio. The results revealed that the meshing characteristics were
affected by the surface roughness and friction coefficient. Chang
et al.[16] presented an improved mathematical model to calculate
the contact stiffness of the joint interface based on the fractal the-
ory and revealed that the dynamic characteristics of a machine
tool structure was notably influenced by the contact stiffness.
The actual contact area and contact force are closely related to

the contact stiffness and load distribution. Hence, it is vital to
estimate the above contact parameters based on the multiscale
contact mechanics. The previous multiscale contact mechanic
models[17,18] mainly concentrated on two rough surfaces. How-
ever, the thread profiles of the PRSMmainly includes straight and
circular types. In other words, the main contact modes between
the profiles of two meshing surfaces could be straight–straight,
straight–convex, and convex–concave in engineering application.
As a result, the previous models are not suitable for the straight–
convex contact. Therefore, it is necessary to introduce the surface
microcontact efficient in order to modify the multiscale contact
mechanical model.
This paper targets at presenting an efficient approach to es-

timate the load distribution and axial stiffness by incorporating
surface roughness, material properties, and operating condi-
tions. The main framework of this study is as follows: in Sec-
tion 2, the axial stiffness and load distributionmodels suitable for
the PRSM are presented by incorporating into the friction factor
and surface microtopography. The rough surface topography is
characterized by the 2DMajumdar–Bhushan (MB) function. The
multiscale fractal contactmodel is built by considering elastic and
plastic contact regimes.Moreover, themodel ismodified by intro-
ducing the surface microcontact coefficient in order to accurately
characterize the contact characteristics of the thread profile. In
Section 3, the numerical examples are carried out, and the model
correctness is validated by comparing with the previous results.
Moreover, the influences of the nut position, fractal dimension,
fractal roughness, friction factor, and yield strength on the axial
stiffness and load distribution are investigated in detail. In Sec-
tion 4, the conclusions are drawn based on the previous analysis.

2. Mathematical Model

The structure of the PRSM is shown in Figure 1. The basic prin-
ciple is that the screw rotates, driving the roller to revolve around
the screw shaft axis while rotating on its own axis, and then the
roller drives the nut to move in the axial direction.

2.1. Axial Stiffness

The axial stiffness of the PRSM is directly related to the axial load
and axial deformation, which is defined by

Ka =
ΔFa
Δ𝛿a

(1)

whereΔ𝛿a is the axial deformation, and the deformations mainly
include the screw shaft deformation 𝛿S, thread deformation 𝛿T,

Nut Roller ScrewInner 
Gear 

Carrier

Figure 1. Planetary roller screw mechanism.

and contact deformation 𝛿C.
[9] According to ref. [9], the axial stiff-

ness considering the accuracy coefficient is defined by

Ka =
Fa

𝛿S + 𝜒(𝛿T + 𝛿C)
(2)

where 𝜒 is the accuracy coefficient and 𝜒 = 1.818. Fa is the total
axial load.

2.2. Screw Shaft Deformation

The screw shaft deformation mainly includes the tension or
pressure deformation, and torsional deformation, as shown in
Figure 2. Then the deformation can be written by[19]

𝛿S =
FaLN
𝜋Er2S

+
2FaLNP

2
S

𝜋3r4S𝜂SG
(3)

where LN denotes the nut position, E is Young’s elastic modulus
of the material, rS is the nominal radius of the screw, PS is the
lead of the screw, 𝜂 is the working efficiency of the PRSM, and
SG is the shear modulus.

2.3. Thread Deformation and Stiffness

The axial thread deformation of the PRSM mainly includes the
deformations caused by the bending force, shear force, thread
root lean, thread root shear, and radial shrinkage or radial expan-
sion, as shown in Figure 3. These deformations are calculated in
detail as follows[20]

1) Deformation caused by bending force

𝛿T1 = (1 − 𝜈2)
3Fri cos 𝛽 cos 𝜆

4E

{[
1 −

(
2 −

ct
at

)2

+ 2 ln
(
at
ct

)]
cot3𝛽 − 4

(
hf
at

)
tan 𝛽

}
(4)
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Figure 2. Contact diagram of the contact point of the PRSM.
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Figure 3. Thread deformations of the PRSM caused by various reasons: a) deformation 𝛿1 caused by bending force or deformation 𝛿2 caused by shear
force; b) deformation 𝛿3 caused by thread root lean; c) deformation 𝛿5 caused by thread root shear; d) deformation 𝛿6 caused by radial shrinkage.

where 𝜈 is the poission ratio. Fri is normal contact force at
ith contact point. 𝛽 and 𝜆 are the flank angle and helix angle,
respectively. at and ct are the thickness of the thread root and
thread thickness, respectively. hf is the thread root height.

2) Deformation caused by shear force

𝛿T2 = (1+𝜈)
6Fri cos 𝛽 cos 𝜆

5E
cot 𝛽 ln

(
at
ct

)
(5)

3) Deformation caused by thread root lean

𝛿T3i = (1 − 𝜈2)
12Fri cos 𝛽 cos 𝜆hf

𝜋Ea2t

(
hf −

ct tan 𝛽
2

)
(6)

4) Deformation caused by thread root shear

𝛿T4 = (1 − 𝜈2)
2Fri cos 𝛽 cos 𝜆

𝜋E

[
p
at
ln

(
p + 0.5at
p − 0.5at

)

+ 0.5 ln

(
4p2 − a2t

a2t

)]
(7)

where, p is the pitch.

5) Deformation caused by radial shrinkage or radial expansion

𝛿T5n =

(
D2
0 + d2p

D2
0 − d2p

+ 𝜈

)
Fridp sin 𝛽 tan 𝛽

2pE
, (nut) (8)

𝛿T5e = (1 − 𝜈)
Fridp sin 𝛽 tan 𝛽

2pE
, (screw or roller) (9)

where, D0 and dp are the external diameter of the nut and
thread effective diameter, respectively.

According to Equations (4)–(9), the thread deformation can be
defined by{
𝛿MTi = 𝛿MT1 + 𝛿MT2 + 𝛿MT3 + 𝛿MT4 + 𝛿MT5e, (M = S or R)
𝛿NTi = 𝛿NT1 + 𝛿NT2 + 𝛿NT3 + 𝛿NT4 + 𝛿NT5e

(10)

The corresponding thread stiffness can be written as

⎧⎪⎪⎨⎪⎪⎩
KMTi =

FSRri cos 𝛽 cos 𝜆

𝛿MT1 + 𝛿MT2 + 𝛿MT3 + 𝛿MT4 + 𝛿MT5e
, (M = S or R)

KNTi =
FNRri cos 𝛽 cos 𝜆

𝛿NT1 + 𝛿NT2 + 𝛿NT3 + 𝛿NT4 + 𝛿NT5e

(11)
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Figure 4. Contact diagram of the contact point of the PRSM.

where, FSR
ri and FNR

ri are the contact load of the ith thread tooth at
the screw–roller and roller–nut interfaces, respectively.
The total thread deformation can be expressed by

𝛿T = 𝛿ST + 2𝛿RT + 𝛿NT (12)

2.4. Contact Deformation and Stiffness

The normal contact deformation and stiffness over threads can
be calculated by the Hertz contact theory. However, the surface
microtopography is not considered by thismethod.Here, we start
from the characterization of rough surface profile and then the
microcontact model considering friction factor is built.

2.4.1. Characterization of Rough Surface Profile

Figure 4 illustrates the contact mechanism of the PRSM between
the screw or nut thread and roller thread. It can be obviously
found that although the contact mode is point contact at screw–
roller or nut–roller interfaces, the microcontacts are multiasper-
ity contacts. In order to accurately characterize the contact char-
acteristics of the surface microtopography, the 2D MB function
is introduced by[21]

z(x) = GD−1(𝜋1∕2r′)2−D cos
(
𝜋x
2r′

)
,
(
−r′ < x < r′, 1 < D < 2

)
(13)

where G and D are the fractal roughness and fractal dimension,
respectively. r′ is the truncatedmicrocontact radius of the asperity
and r′ =

√
2r.

2.4.2. Microcontact Deformation and Area

The microcontacts between the asperities can be equiva-
lent to rough-on-rigid solution in accordance with Johnson’s
assumption.[22] According to Equation (13), the microcontact de-
formation of the asperity can be expressed by

𝛿=GD−1(𝜋1∕2r′)2−D (14)

The actual microcontact area of the asperity is defined by

a = 𝜋r2 = 1
2
𝜋r′2 (15)

The relation among the asperity deformation 𝛿, equivalent cur-
vature radius R, and truncated radius r′of the asperity can be de-
scribed by the Pythagorean theorem, as shown in Figure 4, and
the equation can be written as

R2 −
[
r′2 + (R − 𝛿)2

]
= 0 (16)

As R is much larger than the 𝛿, Equation (16) can be trans-
formed into

R ≈ r′2

2𝛿
(17)

Substituting Equations (14) and (15) into Equation (17), the R
can be expressed by

R = aD∕2

𝜋21−D∕2G(D−1) (18)

In this paper, only the elastic deformation and plastic defor-
mation are considered for microcontact deformation of the as-
perity. When the asperity under the normal load exceeds initial
yielding, partial elastic deformations are transformed into plastic
deformations. Then the critical value of the microcontact defor-
mation from elastic microcontact to plastic microcontact can be
obtained as

𝛿c = R(𝜋K𝜓)2∕4 (19)

where K is the hardness coefficient and K = 0.454 + 0.41𝜈. 𝜓 is
equal to 𝜎s∕E0 and E0 is the equivalent Young’s modulus and can
be expressed by

1
2E0

= 1 − 𝜈2
E2

(20)

where the material elastic modulus and Poisson ratio of the
screw, roller, and nut are the same.
Substituting Equation (18) into Equation (19) to obtain the fol-

lowing critical microcontact deformation of the asperity

𝛿c =
𝜋(K𝜓)2(a∕2)D∕2

8G(D−1) (21)

when 𝛿 is equal to 𝛿c, the critical elastic microcontact area corre-
sponding to the critical elastic microcontact deformation can be
expressed as

ac =
(𝜋K2𝜓2)1∕(1−D)

2(4−D)∕(1−D)G−2 (22)

2.4.3. Microcontact Area of the Asperity Considering Friction Factor

When the screw and the roller are meshing, there is relative
sliding at the meshing point, which causes friction between the
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threaded surfaces, and the friction has a direct effect on the
thread surface. Hence, the friction factor needs to be consid-
ered for the multiscale microcontact mechanic model. When the
meshing thread surface has relative sliding friction, the critical
average microcontact pressure can be written as[23]

ΔFf = 1.1𝜅f𝜎s (23)

where 𝜅f denotes the friction correction coefficient and can be
defined as follows[24]

𝜅f =

{
1 − 0.228𝜇, (0 ≤ 𝜇 ≤ 0.3)

0.932 exp
[
−1.528(𝜇 − 0.3)

]
, (0.3 < 𝜇 ≤ 0.9)

(24)

where 𝜇 is the static friction factor.
According to theHertz contact theory,[23] themapping relation-

ship between the microcontact load and microcontact deforma-
tion of the asperity can be expressed by

𝛿e=
(
3FeER

1∕2

4

)2∕3

(25)

Substituting Equations (18) and (23) into Equation (25) by Fe =
ΔFf, and the critical microcontact deformation considering fric-
tion can be written as

𝛿fc =
𝜋(3.3𝜅f𝜓)

2(2a)D∕2

32G(D−1) (26)

Then the critical microcontact area considering friction can be
expressed by

afc = (6.6𝜋1∕2𝜅f𝜓)
2∕(1−D)2(D−8)∕(1−D)G2 (27)

In previous investigation of the fractal contacts considering
friction,[25–27] the above formulas were usually used. However,
the calculation of the actual microcontact area did not take into
account the changes caused by the friction factors. According to
ref. [28], the actual microcontact area is modified by

a′f = (1 + 𝛼𝜇2)1∕2a (28)

where 𝛼 denotes the contact coefficient and 𝛼 = 3.3.[29]

2.4.4. Surface Microcontact Coefficient

The contact between the screw and the roller could be straight–
straight, straight–convex, and convex–concave.[30] Among these
contact modes, the third is the most commonly used in PRSM.
The difference of the contact modes results in the variations of
the actual microcontact area and microcontact load. In addition,
the size distribution function of the asperity that microcontact

areas are larger than a can be written as

n(a) =

{
D
2
(aL)

D∕2(a′f )
−(D+2)∕2, (0 < a < aL)

0, (aL < a < +∞)
(29)

where aL denotes the largest microcontact area.
However, Equation (29) is suitable for the contact between two

rough surfaces. For example, the thread profiles are not parabolic,
circular, and elliptical. In fact, the contact between the screw and
the roller is the contact between flat surface and spherical sur-
face. Hence, the surface microcontact coefficient needs to be in-
troduced in order to modify the size distribution function of the
asperity. But the previous studies on the surface microcontact co-
efficient were based on the contact between two rough curved
surfaces. The surface microcontact coefficient is defined as fol-
lows

𝜉=
⎡⎢⎢⎢⎣
(

4
𝜋E

R1R2
R1+R2

)1∕2

𝜋
(
R1 + R2

) ⎤⎥⎥⎥⎦
1∕R1+1∕R2

(30)

where R1 and R2 are the curvature radii of two thread surfaces,
respectively. For the PRSM, the thread profiles of the screw and
nut are straight, which means the curvature radius is infinite. It
can be found that Equation (30) is not directly suitable for this
situation. According to the experience, the curved thread profiles
of the screw and nut are very close to the straight thread profile
when the nominal diameter is large and the pitch is small. In this
situation, the surface microcontact coefficient at the screw–roller
and roller–nut interfaces is approximated as Equation (30). The
corresponding curvature radius can be expressed by

RX = rX∕ sin 𝛽 (X = S,R, or N) (31)

Then, the modified size distribution function of the asperity
can be written as

n′(a) = 𝜉
D
2
(aL)

D∕2(a′f )
−(D+2)∕2 (32)

2.4.5. Multiscale Contact Mechanic Model Considering Friction

As described above, the contact regimes include elastic contact
and plastic contact. According to the value of the critical micro-
contact area, the actual contact force at single contact point can
be divided into the following two types:

1) When aL > afc, the total actual contact load at single contact
position consists of the elastic load and plastic load. That can
be expressed by

Fr =
EG(D−1)

3𝜋1∕22(D∕2−3) ∫
aL

afc

n′(a)a′f
(3−D)∕2da + K𝜎s ∫

afc

0
n′(a)a′f da

(33)
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In order to simplify the calculation, dimensionless variables
are introduced by{
Fr

∗ = Fr
EAa

, G∗ = G√
Aa

Ar
∗ = Ar

Aa
, a∗c =

ac
EAa

(34)

Substituting Equations (28), (32), and (34) into Equation (33),
the dimensionless microcontact load can be written as Equa-
tion (35) when the fractal dimension D is not equal to 1.5

Fr
∗ = 𝜉(2−D)∕2

{
g1(D)g2(D)A

∗
r
D∕2

[(
(2−D)A∗

r

𝜉D

)(3−2D)∕2
− a∗c

(3−2D)∕2
]

+K𝜓(1 + 𝛼𝜇)1∕2g3(D)A∗
r
D∕2a∗c

(2−D)∕2}
(35)

where g1(D) =
[(1+𝛼𝜇2)∕𝜋]1∕2

G∗(1−D)2(D−6)∕2
, g2(D) =

D
3−2D

( 2−D
D
)D∕2,

g3(D)=(
2−D
D
)(D−2).

When D = 1.5

Fr
∗ =

(3𝜉)1∕4G(3−2D)∕2g1(D)
4

A∗3∕4
r ln

( A∗
r

3𝜉a∗c

)
+ K𝜓(1 + 𝛼𝜇2)1∕2

(
3a∗c

)1∕4
A∗3∕4
r (36)

1) when aL < afc, the total actual contact load at single contact
position is plastic load. That can be written by

Fr
∗ = K𝜓(1 + 𝛼𝜇2)1∕2A∗

r (37)

2.4.6. Normal Contact Stiffness

The normal contact stiffness of the single pair of themicrocontact
asperities is defined as follows

kn =
𝜕Fr1(a)
𝜕𝛿

=2E(a∕𝜋)1∕2 (38)

where Fr1 is the microcontact force of the asperity.
However, the microcontact stiffness equation is based on the

ideal Hertzian contact model, which is not consistent with the
above fractal model. Taking advantage of the 2D MB function to
represent the top profile of the asperity, the normal microcontact
deformation can be expressed as

𝛿 = G(D−1)a′f
(2−D)∕2 (39)

The relation between normal microcontact deformation and
microcontact load of the asperity can be written by

Fr1 = 4ER1∕2𝛿3∕2∕3 (40)

According to Equations (38)–(40), the normal microcontact
stiffness of the asperity considering friction can be expressed as

kn = 4E(a′
𝜇
∕𝜋)1∕2∕3 (41)

Hence, the normal contact stiffness of single contact point can
be defined by

Kn = ∫
aL

afc

knn
′(a)da =

4𝜉ED
[
(1 + 𝛼𝜇2)∕𝜋

]
3(1 − D)

× aD∕2L

[
a(1−D)∕2L − a(1−D)∕2fc

]
(42)

The corresponding dimensionless equation can be expressed
by

K ′∗
n =

4𝜉(2 − D)D∕2D(2−D)∕2 [(1 + 𝛼𝜇2)∕𝜋]
3(1 − D)

× A′∗D∕2
r

[(2 − D
D

)
A′∗(1−D)∕2
r − a′∗(1−D)∕2fc

]
(43)

where K′n ∗ is the dimensionless normal contact stiffness and
K′n ∗= K′∕(E

√
Aa). Ar′ is the actual contact area and can be writ-

ten by

Ar
′ = ∫

aL

0
n′(a)ada = 𝜉D

2 − D
aL (44)

2.4.7. Contact Deformation

According to the above analysis, the normal contact deformation
of single contact point can be defined by

𝛿n=
Fr
Kn

(45)

The corresponding axial contact deformation can be written as

𝛿C =
Fr cos 𝛽 sin 𝜆
Kn cos 𝛽 sin 𝜆

(46)

2.4.8. Load Distribution Model

The load distribution is an important content for the PRSM
and associated with the investigation of contact stress,
transmission efficiency, energy loss, thermal conductivity,
and fatigue life. Hence, it is essential to calculate the contact
force at each thread tooth.
Figure 5 shows the sketch of the static load of the PRSM under

“T-C” load condition. It can be seen that the deformations include
thread deformation, compression deformation of shaft section,
and contact deformation.[3] The load distribution model at the
screw–roller interface can be defined by

Fri
SR−FSR

ri+1
KSRC

−
[
Fa1∕(sin 𝛽 cos 𝜆)−

∑i
j=1 Frj

SR

KSS

+ FSR
ri+1−F

SR
ri

KST
−

∑i
j=1 (Frj

SR−FrjNR)

KRS
− FSR

ri+1−F
SR
ri

KRT

]
sin 𝛽 cos 𝜆 = 0

(47)

where FSRri and FNRri are the contact load of the ith thread tooth at
the screw–roller and roller–nut interfaces, respectively. They cor-
respond to the contact force in Equation (33). KSRC is the contact
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Figure 5. Sketch of the load distribution of the PRSM.

stiffness at the screw–roller interface and corresponds to the nor-
mal contact stiffness in Equation (42). Fa1 is the total axial load of
single roller and Fa1 = F/n. KST and KRT are the thread stiffness
of the screw and the roller, respectively. KSS and KRS are the shaft
section of the screw and the roller, respectively. KSS and KRS can
be expressed by[3]

⎧⎪⎨⎪⎩
KSS =

𝜋Er2S
np

KRS =
𝜋Er2R
2p

(48)

The dimensionless equation of the load distribution at the
screw–roller interface can be expressed by

Fri
SR∗−FSR

ri+1
∗

K∗
SRC

−
[
F∗a1∕(sin 𝛽 cos 𝜆)−

∑i
j=1 Frj

SR∗

K∗
SS

+ FSR
ri+1

∗−FSR
ri

∗

K∗
ST

−
∑i

j=1 (Frj
SR∗−FrjNR

∗)

K∗
RS

− FSR
ri+1

∗−FSR
ri

∗

K∗
RT

]
sin 𝛽 cos 𝜆 = 0

(49)

where these dimensionless variables are introduced by

⎧⎪⎨⎪⎩
K∗
SRC = KSRC

E
√
Aa
, K∗

SS =
KSS
E
√
Aa
, K∗

RS =
KRS
E
√
Aa

K∗
ST = KST

E
√
Aa
, K∗

RT = KRT
E
√
Aa
, F∗

r =
Fr
EAa

(50)

where Aa is the nominal microcontact area and can be identified
through the power spectrum.[31]

Similarly, the dimensionless equation of the load distribution
at the roller–nut interface can be written by:

Fri
NR∗−FNR

ri+1
∗

K∗
NRC

+
[
F∗a1∕(sin 𝛽 cos 𝜆)−

∑i
j=1 Frj

NR∗

K∗
NS

+ FNR
ri+1

∗−FNR
ri

∗

K∗
NT

−
∑i

j=1 (Frj
SR∗−FrjNR

∗)

K∗
RS

+ FNR
ri+1

∗−FNR
ri

∗

K∗
RT

]
sin 𝛽 cos 𝜆 = 0

(51)

{
K∗
NRC = KNRC

E
√
Aa
, K∗

NS =
KNS
E
√
Aa

K∗
NT = KNT

E
√
Aa

(52)

According to Equations (35), (49), and (51), the dimensionless
equation of the load distribution is a function of Ar. Hence, the
actual contact areas and contact forces over threads can be ob-
tained by these equations.

3. Modeling Algorithms

The overall calculation processing of the axis stiffness and load
distribution is shown in Figure 6, and systematically explained as
follows:

1) Input the machining parameters, design parameters, and
working parameters.

2) Compute the critical microcontact area with friction factor by
Equation (24). Compute the fractal surface microcontact coef-
ficient by Equation (30).

3) Given the maximum initial microcontact area aL. Compute
the actual contact load Fri and normal contact stiffness Kn by
Equation (33) and Equation (42) at the corresponding maxi-
mum microcontact area, respectively.

4) Compute the thread stiffnessKT and shaft section stiffnessKS
by Equation (11) and Equation (48), respectively.

5) Compute the distribution of the actual contact area Ar and
contact force Fri by Equations (35), (49), and (51).

6) Compute the total axial contact load Fa0=nFa1 = n
∑nt

i=1 Fri. If
𝜏=|Fa0 − Fa|∕Fa0 > 𝜀, then aL = aL ± ΔaL. Jump to step (4)
and recalculate the contact stiffness and contact load until|Fa − Fa0|∕Fa < 𝜀.

7) Compute the normal contact deformation, thread deforma-
tion, and screw shaft deformation by Equations (46), (3), and
(12). Compute the axial stiffness by Equation (1).

8) Output the load distribution and axial stiffness.

4. Numerical Examples and Discussion

In this section, an investigation on the static contact load and
axial stiffness of the PRSM is carried out by numerical calcula-
tions. These results cover the load distribution and axial stiffness
by considering the effects of the nut position, fractal roughness,
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Figure 6. Flowchart of the calculation of the load distribution and axial stiffness.

fractal dimension, material yield strength, friction factor, and ax-
ial load. The major design parameters in each example are de-
scribed in Table 1. Moreover, the thickness of the thread root is
1.95 mm, the thread thickness is 0.85 mm, and the root height is
0.55 mm. The transmission efficiency of the PRSM is 85%. The
material elastic modulus and shear modulus are 750 MPa and
79 GPa.

4.1. Model Verification and Comparison

4.1.1. Load distribution

To further verify the credibility of the load distribution model
in current work, a comparison with ref. [3] is conducted un-
der the same conditions. Figure 7 shows the load distribution at
the screw–roller and roller–nut interfaces, when the axial load is

Table 1. Design parameters of the PRSM.

Parameters Screw Roller Nut

Radius (mm) 12 4 20

Flank angle (rad) 𝜋/4 𝜋/4 𝜋/4

Helix angle (rad) 0.1319 0.0794 0.0794

Pitch (mm) 2 2 2

Start 5 1 5

External radius (mm) / / 27.5

Roller number / 10 /

Thread number / 20 /
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Figure 7. Load distribution over threads of the PRSM in different methods. a) Contact forces of the roller threads in ref. [3]; b) contact forces of the roller
threads in current work.
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Figure 8. Layout of the axial stiffness test-bed.

50 kN and the surface roughness is Ra 0.3 (G= 2.9321× 10–6 mm
and D = 1.6073), and the friction factor at the screw–roller and
roller–nut interfaces are 0.05 and 0.03, respectively. It is obviously
found from Figure 7 that the contact forces at the screw–roller
interface are almost the same, while those at the roller–nut in-
terface are slightly different. The maximum contact force in cur-
rent work increases by 1.79% and the minimum contact force
decreases by 2.1% compared to the results of the roller–nut inter-
face in ref. [3]. It can be also found from Figure 7 that although
the approaches are different, the results are very anastomotic be-
tween the current work and ref. [3]. To this end, based on the
aforementioned analysis, it can be validated that the results of
the load distribution conducted in current article are credible.

4.1.2. Axial stiffness

Axial stiffness is a vital performance indicator of the PRSM, and
it plays an important role on the transmission accuracy and dy-
namic characteristic of the PRSM. Therefore, it is necessary to
estimate the axial stiffness in accordance with the working po-
sition and external load. In order to further confirm the correct-

ness of the calculation results of axial stiffness, the results of ex-
periment and finite element method (FEM) are used to compare
under the same working conditions. The test-bed layout of the
axial stiffness is shown in Figure 8, and the test site is shown in
Figure 9. During the test of the axial stiffness, the input end of
the screw of the tested PRSM is locked with an expansion sleeve,
and then the value of the axial force is manually increased on the
operation panel, and the actual axial force and the corresponding
axial deformation are both recorded. The electric cylinder (Park
ETH100M10C1P1CBMN0400A) is used to apply the axial force
to the PRSM. The applied force of the PRSM measured by the
tensile/compressive force transducer (HBM U3) is ΔFa, and the
output axial deformation of the PRSM measured by the grating
ruler (Heidenhain LC 485) is Δ𝛿a, then the axial stiffness of the
PRSM is Ka = ΔFa/Δ𝛿a.
Figure 10 shows the effects of the axial load and nut position

on the axial stiffness through theory, simulation, and experiment.
The axial loads change from 20 to 45 kN and the nut position
varies from 60 to 120mm. As shown in Figure 10, it can be clearly
found that the predicted results by theoretical calculation are rel-
atively consistent with the FEM and test results. As can be seen
from Figure 10a–c that the maximum relative error of the axial
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1
2

3

4

Figure 9. Testing site. 1) Electric cylinder, 2) tensile/compressive force transducer, 3) grating ruler, 4) prototype.

Figure 10. The variations of the axial stiffness versus the axial load and nut position: a) the nut position LN = 60 mm; b) the nut position LN = 90 mm;
c) the nut position LN = 120 mm.
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Figure 11. Axial stiffness under different axial load and fractal dimension.

stiffness between the results obtained by the theoretical calcula-
tion and by FEM is 8.3%, and that between the results obtained
by the theoretical calculation and by the test is 11.9%. During
the test, the axial deformation data collected by the grating ruler
include the structural deformation of the test bench, so that the
axial stiffness of the test is smaller.
Figure 10 presents variations of the axial stiffness versus the

axial load and nut position. It can be seen that under the same nut
position, the larger the axial load, the higher the axial stiffness. In
addition, it can be found that under the same axial load, the axial
stiffness reduces as the nut position increasing. Themain reason
is that the increase of the nut position results in the increase of
the screw shaft deformation, which is obtained by Equation (3).

4.2. Effect of the Fractal Parameters

The thread surface quality is directly related to fractal parameters.
These parameters mainly consider fractal dimension and fractal
roughness.

Figure 12. Load distribution under the different thread number and fractal dimension. a) The variation of the load distribution of the screw–roller
interface. b) The variation of load distribution of the roller–nut interface.

4.2.1. Effect of the Fractal Dimension

In Figure 11, the axial stiffness is calculated under the differ-
ent axial load and fractal dimension. The detailed parameters
are shown below: the axial loads change from 20 to 50 kN, the
fractal roughness is G = 2.9321 × 10–9 m, the friction factors at
the screw–roller and roller–nut interfaces are 0.05 and 0.03, the
yield strength is 750 MPa. It can be obviously found that with
the fractal dimension increasing, the axial stiffness monotoni-
cally increases. The main reason for the phenomenon is that the
bigger the fractal dimension, the more the high frequency com-
ponents, the smoother the thread surface. That is consistent with
ref. [32]. In addition, the axial stiffness rises as the growth of the
axial load.When the fractal dimension is small, the axial stiffness
changes more obviously with the axial force. When the fractal di-
mension is large, the axial stiffness varies slightly with the axial
force. Therefore, it can be concluded that the large fractal dimen-
sion is beneficial to achieve high and stable axial stiffness.
In Figure 12, the contact forces are computed under the dif-

ferent axial load and fractal dimension. We can find from Fig-
ure 12a that under the same fractal dimension, the contact force
at the screw–roller interface decreases as the thread number in-
creasing. Moreover, the larger the fractal dimension, the more
uneven the load distribution. In the first few threads of the roller,
the contact force increases with the fractal dimension increasing;
while in the last few threads, the contact force decreases with the
growth of the fractal dimension. The variation trend of the load
distribution at the roller–nut interface is similar with that at the
screw–roller interface.

4.2.2. Effect of the Fractal Roughness

Figure 13 shows the variation of the axial stiffness under the dif-
ferent fractal roughness and axial load. The engineering parame-
ters are the same as the above. It can be found fromFigure 13 that
with the fractal roughness increasing, the axial stiffness mono-
tonically decreases. The main reason for the phenomenon is that
the larger the fractal roughness, the higher the amplitude of the
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Figure 13. Axial stiffness under the different axial load and fractal rough-
ness.

surface topography, and the rougher the thread surface. As a re-
sult, the axial stiffness is smaller. Therefore, it can be concluded
that the smaller fractal roughness is beneficial to improve the ax-
ial stiffness.
Figure 14 indicates the dependence of the load distribution on

the thread number and fractal roughness. It can be obviously
seen from Figure 14a that the uniformity of the contact force
at the screw–roller interface increases significantly as the fractal
roughness increases. In other words, the contact forces decrease
with the increase of the fractal roughness in the first few threads,
while those increase slightly in the rest threads. The reason is that
the surface is rougher as the growth of the fractal roughness, but
the actual contact area decreases. That leads to the variation of the
load distribution. In addition, the variation trend of the load dis-
tribution at the roller–nut interface is consistent with that at the
screw–roller interface. Hence, it can be concluded that the larger
fractal roughness has an advantage of improving the uniformity
of the load distribution.

Figure 14. Load distribution under the different thread number and fractal roughness (D = 1.6073). a) The variation of load distribution of the screw–
roller interface. b) The variation of load distribution of the roller–nut interface.

4.3. Effect of the Friction Factor

In Figure 15, the axial stiffness is computed under the dif-
ferent friction factors and axial loads. It can be found from
Figure 15a,b that under the same axial load, the axial stiff-
ness reduces slightly when the friction factor changes from
0.01 to 0.2; while the axial stiffness notably decreases when
the friction factor varies from 0.31 to 0.5. The difference be-
tween different intervals can be explained by Equation (24).
However, the friction factor is less than 0.3 in engineering
application.[33,34] Moreover, under the same friction factor, the ax-
ial stiffness rises significantly with the growth of the axial load.
Figure 16 shows the load distribution against the friction factor

and thread number. It can be found that the load distribution is al-
most unchanged when the friction factor varies from 0.01 to 0.2.
As mentioned before, the load distribution also mainly considers
the situation where the friction factor is less than 0.3. Hence, the
load distribution is almost unchanged when the friction factor is
small.

4.4. Effect of the Material Properties

The axial stiffness is calculated under the different material yield
strength and axial load, as shown in Figure 17. The axial stiffness
increases significantly according to a yield strength increment,
while the increment rate of the axial stiffness reduces with mate-
rial yield strength increasing. The difference of the material yield
strength could be derived from the heat treatment methods or
processingmethods such as fine grinding or rolling. For the bear-
ing steel, thematerial yield strength is generally 750MPa, and the
corresponding axial stiffness is about 5.7872 × 105 N mm−1. In
addition, it can be found from Figure 17 that, under the same
material yield strength, the axial stiffness increases when the ax-
ial load changes from 20 to 35 kN. Thus, it can be concluded that
the material yield strength and axial load have a great influence
on the axial stiffness of the PRSM.
Figure 18 illustrates the load distribution against the material

yield strength and thread number. As shown in Figure 18a, it can
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Figure 15. Axial stiffness under different axial load and friction factor. a) The friction factor changes from 0.01 to 0.2. b) The friction factor varies from
0.31 to 0.5.

Figure 16. Load distribution under the different thread number and friction factor. a) The variation of contact forces of the screw–roller interface. b) The
variation of contact forces of the roller–nut interface.

Figure 17. Axial stiffness under the different axial load and material yield
strength.

be seen that at the screw–roller interface, the contact force in-
creases but the increment rate decreases with the increase of ma-
terial yield strength when the thread number of the roller is the
first 9 teeth. However, the contact force decreases with the growth
of material yield strength when the thread number of the roller is
the remaining. Moreover, Figure 18b shows that the variation of
the contact force at the roller–nut interface is consistent with that
at the screw–roller interface. Thus, we can find that the material
yield strength plays an important role on the load distribution of
the PRSM.

5. Conclusions

In this paper, the axial stiffness and load distribution models
suitable for the PRSM are presented by considering the surface
microtopography and friction factor. The rough surface topogra-
phy is characterized by the 2D fractal function. The multiscale
microcontact model is built by considering elastic and plastic
contact regimes to calculate the total actual contact area used
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Figure 18. Load distribution under the different thread number and yield strength. a) The variation of contact force of the screw–roller side. b) The
variation of contact force of the roller–nut side.

in the load distribution. The multiscale microcontact model is
modified by introducing the surface microcontact coefficient in
order to accurately characterize the microcontact characteristics
of the thread profile. Then, the influences of the nut position,
fractal dimension, fractal roughness, friction factor, axial load,
and material yield strength on the axial stiffness and load
distribution are furtherly studied. The main contributions and
conclusions are summarized as follows:

1) The effect of the nut position of the PRSM on the axial stiff-
ness is large. The axial stiffness decreases with the increase
of the nut position when the axial load is fixed. In addition,
when the nut position is fixed, the larger the axial load, the
greater the axial stiffness.

2) The fractal dimension has a great influence on the axial stiff-
ness. The larger the fractal dimension, the smoother the
thread surface, and the higher the axial stiffness. It is effec-
tive to improve the axial stiffness by improving thread surface
quality. Whereas, the load distribution is slightly influenced
by the fractal dimensionwhen the dimension varies from 1.55
to 1.85.

3) The influence of the fractal roughness on the variation of the
axial stiffness and load distribution is obvious. The axial stiff-
ness monotonically decreases with the fractal roughness in-
creasing. The larger the fractal roughness, the higher the am-
plitude of the surface topography, and the rougher the thread
surface. As a result, the axial stiffness is smaller, while the
uniformity of the load distribution is better. Hence, the ax-
ial stiffness and load distribution should be comprehensively
considered when the fractal roughness is selected.

4) The axial stiffness reduces slightly with the growth of the fric-
tion factor when the factor is less than 0.3, while that de-
creases significantly when the factor is more than 0.3. More-
over, the variation rule of the load distribution is consistent
with the axial stiffness.

5) The increase of the material yield strength is beneficial to im-
prove the axial stiffness when the friction factor and fractal
parameters are fixed. But the unevenness of load distribution

increases as adding of material yield strength. Therefore, the
selection of the material yield strength should consider the
axial stiffness and load distribution at the same time.
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