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Static Load Distribution and
Axial Stiffness in a Planetary
Roller Screw Mechanism
In this paper, an original approach is proposed to calculate the static load distribution
and the axial stiffness of a planetary roller screw (PRS) mechanism. Assuming that the
external loading is shared equally over an arbitrary number of rollers, only a sector of
the system is represented to save on computing time. The approach consists in using a
structure of bars, beams, and nonlinear springs to model the different components of the
mechanism and their interactions. This nonlinear model describes the details of the mech-
anism and captures the shape of the nut as well as the bending deformation of the roller.
All materials are assumed to operate in the elastic range. The load distribution and the
axial stiffness are determined in three specific configurations of the system for both com-
pressive and tensile loads. Further, the influence of the shape of the nut is studied in the
case of the inverted PRS. The results obtained from this approach are also compared to
those computed with a three-dimensional finite-element (3D FE) model. Finally, since the
calculations appear to be very accurate, a parametric study is conducted to show the
impact of the bending of the roller on the load distribution. [DOI: 10.1115/1.4031859]

Keywords: planetary roller screw, inverted, load distribution, load sharing, axial stiff-
ness, finite element, model, bar, beam, nonlinear spring, bending deformation

1 Introduction

The PRS is a mechanism that transmits heavy loads with
extremely high precision and low friction, by converting a rotary
motion into a linear motion and vice versa. In the past decade, it
has become the object of increasing interest due to new challenges
in industrial fields and mainly in aeronautics. As it can be
involved in electromechanical actuators designed for electric air-
craft, many projects are focusing on improving knowledge of the
mechanism. In the PRS, the load is transmitted through multiple
contacting points at each side of the rollers, and the way the exter-
nal load is shared over those points is of great importance for the
proper sizing of this mechanism. As it is not uniform and involves
large numbers of parameters and nonlinear contacts, determining
the load distribution is not easy.

Earlier work in the literature put more emphasis on the practical
and experimental aspects of the PRS, such as the apparent coeffi-
cient of friction [1], the static stiffness and vibration frequencies
[2], the efficiency and failure modes [3], the elastic elements in
the preloaded PRS [4], and the limitations in terms of force, slip,
and lead properties [5] of the mechanism. Few, but recent, papers
have raised and dealt with the theoretical and fundamental aspects
of PRSs to provide a common theory and to support engineering
applications. Velinsky et al. [6] analyzed the kinematics, the effi-
ciency, and the load carrying capacity of the roller screw mecha-
nism. His kinematic analysis took the axial and angular motions
of the roller into account. He also developed a slip pattern
between the contacting threaded components and showed that slip
always occurred in the system. The load carrying capacity was
derived on the basis of geometric and equilibrium conditions.

Jones and Velinsky [7] provided a kinematic model to predict the
axial migration of the rollers relative to the nut in the PRS mecha-
nism, which is due to manufacturing errors. He explained that this
migration is caused by slip at the nut–roller interface, which in
turn is caused by a pitch mismatch between the spur-ring gear and
the effective nut–roller helical gear pairs. This migration causes
bending of the teeth and can lead to failure of the system. Later,
using the principle of conjugate surfaces, Jones and Velinsky [8]
developed a model to accurately determine the components’ radii
in order to help reduce the phenomenon of roller migration. Liu
and Wang [9] attempted to describe the structure and movement
principle of the PRS and established the equation of screw and
roller thread surfaces generated by straight profiles. Shangjun
et al. [10] proposed a numerical approach to minimize the mesh-
ing clearance in a PRS.

However, as far as the load sharing issue is concerned, few
researchers have proposed models for its computation in the PRS.
Shangjun et al. [11] studied the relationships among parameters
and suggested a model to determine the static load distribution
within the PRS. Derived from those of ball screws [12], the model
is based on the equilibrium condition and the elastic relations
between the screw and the nut. The rollers are assumed to be rigid
bodies and only their contacting deformations at the nut–roller
and screw–roller interfaces are involved in the calculations, which
are based on Hertzian theory. Rys and Lisowski [13] proposed an
analytical model to calculate the load distribution in static situa-
tions. Their model was intended for preliminary design purposes.
The model was based upon the deformations of the rolling ele-
ments considered as deformations of rectangular volumes sub-
jected to shear stress. However, Rys’s model is not able to
guarantee that the value passing through the first active thread is
really correct. Recently, Jones and Velinsky [14] used a direct
stiffness method to model the whole PRS as a large spring com-
posed of individual linear and linearized springs that reflect the
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various compliances. They used their method to compute the axial
stiffness and the load distribution at each side of a roller in four
different loading configurations. They also studied the sensitivity
of their model to the number of threads and rollers.

The results obtained by the previous three authors show that the
load distribution is not uniform at each side of a roller in a PRS.
Their models did not involve the flange of the nut and only that of
Jones and Velinsky involved the elasticity of the roller and the
axial deformation of threads. It can also be noted that the load dis-
tribution is a very new topic in the literature and poses a particular
set of problems. Earlier models did not consider the bending flexi-
bility of the roller or even the shape of the nut, which can have a
significant impact on the load distribution and the axial and radial
stiffnesses. Neither the axial relative position of the roller, defin-
ing the configuration of the system, nor the boundary conditions
(BCs) on the component were fully analyzed. An efficient model
must take these parameters into account to ensure realistic load
distributions at the nut and the screw sides of the roller. In a prior
work, using 3D FE analysis, Abevi [15] demonstrated that the
load distribution, in the case of an “inverted” PRS was not the
same at each side of the roller regarding the threads of the roller
in contact with the nut and the screw, respectively. Among other
things, he provided a model to calculate the contact radii and the
curvatures of contacting surfaces accurately in an inverted PRS.

This paper presents a fast, robust method based on a hybrid
model of one-dimensional finite-elements (1D FEs) and nonlinear
springs to compute the axial stiffness and the static load distribu-
tion in any type of PRS. In the current investigations, only the
shape of the nut and the bending flexibility of the roller are taken
into account. For the sake of simplicity, other parameters such as
the thread deformations (bending deformation, shrinkage defor-
mation, shear deformation, etc.) and the radial expansion of the
nut are neglected and will be investigated in a future work. The
load distribution is determined in three specific configurations of
the system, taking cases of both compressive and tensile loading.
The results obtained from this approach are also compared to ref-
erence numerical results. The approach developed here is used to
study the load distribution in an inverted PRS through a paramet-
ric analysis based on the variation of the external load.

2 Inverted PRS

There are two kinds of nonrecirculating PRS: the standard and
the inverted PRS (Fig. 1). For the standard one, the rollers are
equally distributed circumferentially within the nut and the ring
gears, as well as the guiding rings, are mounted inside the nut.
Theoretically, there is no slip between the rollers and the nut. In
contrast, more compact and more capacitive, the inverted PRS has
its rollers set circumferentially around the screw shaft with the
guiding rings and the ring gears. Theoretically, there is no slip
between the rollers and the screw shaft. The nut of the inverted
PRS studied has two flanges (Fig. 2), which are connected to the
bearings of the supports. A static 3D FE analysis was previously
carried out to investigate the in-depth stresses, pressure

distribution, and deflection results that contribute to the calcula-
tion of the load distribution and the axial stiffness. These results
will be considered as reference data in the following and used for
comparison.

3 Model of the Static Load Distribution

3.1 The Problem. Since there are two types of contacts for
the roller, with different load distributions, it is necessary to
describe them precisely. Here, the teeth of the gearing are
assumed not to deflect during axial loading and are not taken into
consideration in the current model.

Let us denote the axial external force acting upon the central
screw shaft by F. This force is assumed to be known in direction
and strength. Similarly, we denote the normal force acting on a
contact Cv by Fv. Fv is an unknown variable that has to be deter-
mined using a relevant model. Because of the static equilibrium, it
is possible to write the following relation, Eq. (1), according to
the nut or the screw:

F

nr
¼
XNc

v¼1

Fv: cos anv: cos bv � lv: sin bvð Þ ¼
XNc

v¼1

Fv: cos wvð Þ (1)

where v is a generalized parameter such as v2 {k, g} with k and g
referring to the screw–roller and the nut–roller contacts, respec-
tively, bv is the helix angle related to the contact Cv, anv is the nor-
mal pressure related to the contact Cv, and lv is the coefficient of
friction related to contact Cv. Nc is the number of contacts at each
side of the roller. The parameter wv is a generalized equivalent
angular parameter defined as follows:

wv ¼ arccos cos anvð Þ: cos bvð Þ � lv: sin bvð Þ
� �

(2)

The distributed loads Fv are unknown and have to be deter-
mined with respect to all compliances. Thus, 2Nc loads normal to
contact have to be found, meaning that 2Nc equations need to be
written. After solving that set of equations, it will be possible to
compute the load distribution in the system, i.e., the load distribu-
tion issue in the PRS. Note that the loading rate lv on a thread can
be defined as the ratio between a thread axial load and the external
load referred to a roller, expressed as a percentage as defined in
the following equation:

lv ¼
Fv cos wvð Þ

F

nr

� � (3)

3.2 Hybrid Model of the PRS. In the present hybrid model,
the different components of the PRS are represented with a series of
1D FE having two degrees-of-freedom (DOFs). These elements are
bar, beam, and spring elements. The reason for using this type of ele-
ment is that it is easier to encode than two-dimensional or three-
dimensional FEs. Also, this approach significantly reduces the size

Fig. 1 (a) Inverted PRS and (b) standard PRS [15]
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of the problem, and the corresponding in-plane model is referred to
as a one-dimensional finite element model (1D FEM) in this paper.

Each element describes a part of a component. Each node of
the element denotes the center of the extreme section of the part.
Bar elements are used to describe linear elastic behavior of the
screw and the nut in the axial direction. Beam elements are used
here to describe the behavior of the roller since it bends in prac-
tice. Nonlinear springs are used to model the behavior of a con-
tact. Using a combination of these elements, the behavior of the
PRS can be fully described at system level. To simplify the model,
only a sector of the PRS including one complete roller is consid-
ered. The following assumptions are made:

— The ending gears of the PRS are not involved in fully axial
loading.

— The roller is considered as a bending component that
behaves elastically.

— The normal contact direction remains the same under
loading.

— There is no friction between contacting surfaces, meaning
that lv equals zero.

— The flexural deflection of threads is not taken into account.
— The number of contacts is assumed to be the same at each

side of the roller.
— Materials are assumed to operate in their elastic range.

3.3 Meshing of Components. An appropriate choice of ele-
ments can be made only after a detailed analysis of the behavior
of the system when it is subjected to loads. It is important to real-
ize the role of each component and the issue of deformations that
may affect its various sections. This analysis should be conducted
from both global and local perspectives.

Usually, the nut is connected to a support assumed to be rigid.
Note that the rotation of the nut generates a translation of the
screw which acts on a driven component. The screw is loaded
either in tension or in compression. 3D FE models [15] have

shown that, for the screw, the predominant strain corresponds
mainly to tension or compression. The deformations due to the
bending rigidity of the threads of each component are neglected
for the sake of simplicity. Thus, the screw can be considered as a
bar with an annular cross-sectional area and meshed with other
“bar” elements (Fig. 3). Each element represents a portion of the
screw and its length is equal to the axial pitch of the screw. Using
a rigid element, each contacting point or node is connected to a
node of the bar element. This means that the displacements of the
contact nodes derive from those of the bar elements.

The nut is constrained in translation from its shoulder using the
bearings. The nut can be modeled as a cylindrical tube. According
to the position of the screw relative to the shoulders, certain por-
tions are either compressed or extended. The radial expansion is
not taken into consideration, and the nut is meshed using a series
of bar elements as in the case of the screw. Each node of the bar
element is linked to the contacting point through a rigid element.
The corresponding discrete model of the nut is shown in Fig. 3
according to the external load direction on the shaft.

Set between the screw and the nut, the roller is under contacting
loads that tend to extend, compress, or bend it according to the
BCs. Since the bending behavior is targeted in the present paper,
the roller can be meshed with beam elements (Fig. 3).

The threaded lengths of the components are meshed with as
many elements as there are contact nodes. As a result, the length
of each element is equal to the axial pitch px, which is the same
for the nut, the roller, and the screw. Any nonthreaded portion is
described by an element having a length equal to the portion
described here. However, for the nut, fully threaded here, any non-
functional threaded portion that does not interact directly with
other threads of the roller is modeled by one or more bar elements
with the appropriate characteristics depending on the presence or
absence of a flange.

By bringing together the various FEs used to mesh the various
slices of the screw, the nut, and the roller, a discrete assembly can
be built (Fig. 4). To model the interactions between the threads,

Fig. 2 Studied inverted PRS with two flanges at its initial position

Fig. 3 Discrete model of components of the inverted PRS
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nonlinear springs are used in the direction wv or (p–wv) according
to the external compressive or tensile force in the axial plane.

3.4 Interaction Laws. The springs used to describe the con-
tact between threads are nonlinear in order to correctly model the
deflection of the centers of the contacting flanks. This deflection is
due to the nonlinear local deformations at the interface of a pair of
flanks under a contacting load, which is an unknown distributed
load. Moreover, it is assumed that the springs act only in the direc-
tion normal to the flanks. That direction is also considered invaria-
ble under a given load, and the springs are only active when
compressed. The parameters ko of these springs were identified
from the contacting surfaces’ characteristics (contact radii, surfa-
ces curvatures, and Young’s modulus) using Hertzian theory
[15,16].

In the local coordinates system, the ending nodes i and j
(Fig. 4) of the spring elements are characterized by the DOFs wi

and wj, respectively, corresponding to nodal displacements
ui¼ fi(wi), vi¼ gi(wi) for node i and to uj¼ fj(wj), vj¼ gj(wj) for
node j in the global basis. Note that the nodal displacements are
based on wi and wj. In the global basis, the stiffness matrix KS

related to the nodal displacements ui and vi of the node i and nodal
displacements uj and vj of the node j is given by the following
equation:

Ks ¼ kv � Tb
t wvð Þ � Kbe½ � � Tb wvð Þ (4)

where matrices Tb and Kbe are defined in the Appendix, kV is the
nonlinear elasticity of the contact or of the spring given by the fol-
lowing equation:

kv ¼
1

cos wvð Þn k0 ui � ujð Þn�1 ¼ 1

sin wvð Þn k0 vi � vjð Þn�1 (5)

where n is a constant of value 2/3, k0 is the elastic modulus, which
depends on material and geometric properties: radii of curvature,
Young’s modulus, Poisson’s ratio, etc.

The stiffness matrix KS of the spring can finally be written
according to Eq. (6). The matrix KS is obviously not linear due to
KV, which is a nonlinear function based on the nodal displace-
ments ui, uj or vi, vj

Ks ¼
1

cos wvð Þn k0 ui � ujð Þn�1 � Tb
t wvð Þ � Kbe½ � � Tb wvð Þ (6)

3.5 Global Stiffness Matrix of the System. The stiffness
matrices KV and KD of the screw and the nut, respectively, can be
obtained using the elementary matrix Kb of a bar element. The
stiffness matrix KRo of the roller is derived by assembling the ele-
mentary matrix Kp of a beam element. Also, after adding the ele-
mentary matrix KS of each spring, the nonlinear matrix KSp of the
“super-element” denoted “multisprings” can be constructed. The
elementary matrices Kb, Kp, and KS are given in the Appendix.
The global stiffness matrix Kn of the PRS is expressed by Eq. (7),
where qnd is the vector of DOFs of the nodes of the contacting
springs

Kn ¼ diag

KV

KD

KRo

KSp qndf gð Þ

0
BBB@

1
CCCA (7)

3.6 BCs. It is important to set the BCs applied to the system
in terms of loading and displacements. Four BCs have been identi-
fied (BC1, BC2, BC3, and BC4).

BC1: since, in practice, it is assumed that the screw undergoes
pure axial deformation, all the radial displacements of the bar ele-
ment are zero. The figure below (Fig. 5) illustrates the BCs
applied to the screw shaft. For easier comprehension, the rigid ele-
ments are not represented. This BC is expressed by the relation of
Eq. (8), where p is the number of nodes used to mesh the screw
shaft

v1 ¼ � � � ¼ vp ¼ 0 (8)

BC2: as the screw shaft is under a load F0, its left node is con-
strained. The external force F0 is applied in the negative sense for
the tensile case (TC) and in the positive sense for the compressive
case (CC). This load BC is set by operating on the vector of nodal
external forces Fn. This BC is expressed by the following
equation:

Fig. 4 Discrete model of the PRS mechanism
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Fnf g ¼ F0 … … 0
� �t

(9)

BC3: the presence of the two rings is modeled through the
application of two constraints on each end of the roller as shown
in Fig. 6. It is assumed that the radial displacement at each end is
zero for a roller. In that case, the BC is represented by Eq. (10),
where q corresponds to the number of nodes used to mesh the
roller and g corresponds to the total number of nodes used to
mesh both the screw and the nut

vpþ1 ¼ vpþ2 ¼ vpþq�1 ¼ vpþq ¼ 0 (10)

BC4: for the nut, all the radial displacements of the nodes are
zero as for the screw shaft. In addition, the node representing the
“thrust” near the section of the blocked flange is constrained axi-
ally in motion. Its displacement is set to zero as described by the
following equations:

uc ¼ 0 (11)

vpþ1 ¼ � � � ¼ vpþq ¼ � � � ¼ vpþg�1 ¼ � � � ¼ vpþqþg ¼ 0 (12)

3.7 Configurations of the System. To address these prob-
lems, three main configurations of the PRS under study that fit the
possible relative positions of the screw shaft according to the nut

and the thrust are identified. The figures below (Figs. 7–9) illus-
trate these configurations in a simplified way by focusing on the
representation of the nut without the rigid elements or the symbols
of BCs. Nevertheless, the node axially constrained in motion is
clearly indicated: at left for the TC and at right for the CC. Other
intermediate configurations are available in Ref. [15].

It is important to distinguish such configurations in order to
construct the stiffness matrices of the nut as the number of ele-
ment changes depending on the configuration. The distinction is
also important for the determination of the subscript or the rank of
the node corresponding to the thrust, since that subscript depends
on the configuration of the system and the type of loading (com-
pressive or tensile).

CONFIG 1 is the configuration where the system is at its initial
position. CONFIG 2 is the configuration where the set of rollers
and the screw are in the middle of the nut. CONFIG 3 is the con-
figuration where the screw reaches its final position.

3.8 Numerical Solution of the Problem. The resolution of
the problem is based on an energy formulation. It takes advantage
of dependency relationships between displacements due to rigid
coupling elements. The derivative of the total potential energy
EPT of the system is as expressed by the following equation:

@

@qj
EPTð Þ ¼ 0 (13)

Fig. 5 BCs on the screw without the representation of the corresponding rigid elements

Fig. 6 BCs on the roller

Fig. 7 Meshing of the nut in CONFIG 1
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where the potential energy EPT is given by Eq. (14), with {qn} the
vector of DOFs of all nodes including those of springs

EPT ¼
1

2
qnf gt � Kn½ � � qnf g � qnf gt � Fnf g (14)

The vector qn can be rewritten based on the DOFs qni of the
nodes describing the components as shown by the following
equation:

qnf g ¼
qni

qnd

� 	
¼ I

Gdi


 �
� qnif g (15)

where I is the identity matrix, Gdi is the adjacency matrix that
connects qnd, the DOFs of the nodes of the contacting springs, to
qni, the DOFs of the components’ nodes. The adjacency matrix
Gdi can be found in Ref. [15]. Thanks to Eq. (15), the expression
of the potential energy EPT, Eq. (14), yields the relation of the
following equation:

EPT ¼
1

2
qnif gt � KR½ � � qnif g � qnif gt � FRf g (16)

where KR and FR, given by Eqs. (17) and (18), are, respectively,
the reduced stiffness matrix of the system and the reduced vector
of nodal forces

KR½ � ¼ I GT
di

� 

� Kn½ � �

I
Gdi


 �
(17)

FRf g ¼ I GT
di

� 

� Fnf g (18)

The nodal displacements stored in the vector qni are unknown
and must be determined by solving the nonlinear set of reduced
equations, Eq. (19)

KR½ � � qnif g ¼ FRf g (19)

To solve Eq. (19), either the Newton–Raphson method or the
Fixed Point method can be used, both of which are iterative tech-
niques. Once the nodal displacements qni are known, the nodal
displacements qnd of the springs can be computed using the fol-
lowing equation:

qndf g ¼ Gdi½ � � qnif g (20)

Finally, the distributed loads Fv can easily be computed using
the stiffnesses of the springs as given by Eq. (21) and calculating
the loading rates lV with Eq. (3)

Fv ¼
1

cos wvð Þn k0 ui � ujð Þn ¼ kv � ui � ujð Þ (21)

4 Application and Results

As an example of application, an inverted PRS is considered
with a maximum load applied to the screw shaft that represents
50% of the static load capacity, Ca0, of the mechanism. It is
assumed that the number of contacts is the same at each side of a
roller. All the input parameters of the inverted PRS are summar-
ized in Table 1. The nonlinear contact parameters are derived and
summarized in Table 2. Let us compare the results (Figs. 10–14)
obtained from our model and those from a 3D FE model, which is
considered as the reference. The BCs are the same for the two
models and the comparison is made in the three configurations
(CONFIG 1, CONFIG 2, and CONFIG 3).

4.1 Axial Stiffness of the PRS. The axial stiffnesses in the
three configurations are illustrated by Fig. 12. The stiffnesses
computed by our model are in good agreement with those from
the 3D FEM. The maximum relative discrepancies are �9% (TC)
and 4% (CC) in CONFIG 1, 3% (TC) and �9% (CC) in CONFIG
2, and �5% (TC) and 7% (CC) in CONFIG 3. It can be observed
that the axial stiffness depends on the configuration of the mecha-
nism and the loading direction. In the present case of the inverted
PRS, while the screw shaft is moving inside, the axial stiffness

Fig. 9 Meshing of the nut in CONFIG 3

Table 1 Parameters of the inverted PRS

Parameters Symbols Units Values

Pitch diameter of the screw ds mm 21
Lead pz mm 5
Number of starts ns — 3
Number of rollers nr — 11
Number of contacts at each interface Nc — 20
Pressure angle an deg 45
Maximum external load F kN 45
Static load capacity Ca0 kN 91.8
Young’s modulus E GPa 209

Fig. 8 Meshing of the nut in CONFIG 2
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increases under tensile loading and decreases under compressive
loading.

4.2 Load Distribution at the Screw–Roller Interface. At
the “screw–roller” interface, the load distribution varies according

to the system configuration and the loading direction. The most
critical situation for the threads of the screw appears to be com-
pressive loading. This is mainly due to the effect of the roller’s
flexibility. In all configurations, the load decreases from the first
thread of the screw to the last. Also, the predictions of the hybrid

Table 2 Parameters at contacting interfaces

Parameters Symbols Units Values

Generalized angular parameter at the screw–roller interface wk deg 45.0288
Generalized angular parameter at the nut–roller interface wg deg 45.0803
Equivalent curvature radius at screw–roller interface Rqk mm 2.4846
Equivalent curvature radius at nut–roller interface Rqg mm 1.9610
Constant elasticity at screw–roller interface kok N �mm�3/2 3.6062� 105

Constant elasticity at nut–roller interface kog N �mm�3/2 4.2140� 105

Fig. 10 Axial stiffness curves in CONFIGs 1, 2, and 3 with a bending flexible roller

Fig. 12 Load distribution at the screw–roller side in a TC in CONFIGs 1, 2, and 3

Fig. 11 Load distribution at the screw–roller side in a CC in CONFIGs 1, 2, and 3
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model are in good agreement with the 3D FEM incorporating a
flexible roller.

In the CC, the model underpredicts the loading rates with
respect to the reference model for some threads and overpredicts
for others (Fig. 11). The highest discrepancy is about 10.2% and
the lowest is about �9%. The mean of the relative discrepancies
is less than 3% in any of the three configurations. In the TC, the
model captures the global tendency well and is also in quite good
agreement with the reference model (Fig. 12). The differences
between the two models are slightly greater than in the CC. The
highest relative gap is about 15.9% and the lowest is about
�15.6%, whereas the mean of the relative discrepancies is less
than 2% in each configuration.

4.3 Load Distribution at the Nut–Roller Interface. At the
nut–roller interface, the load distribution differs greatly from one
configuration to another. It depends on the loading case, the flexi-
bility of the roller, the position of the nut’s flanges, and the thrust.
The effect of the flange on the load distribution is evaluated with
more or less accuracy.

The model predicts results in the CC well, in comparison with
the 3D FEM analysis (Fig. 13). The highest relative discrepancy is
about 28.2% and the lowest is about �52%. The mean relative
discrepancies are �2.1% in CONFIG 1, �0.3% in CONFIG 2,
and �0.9% in CONFIG 3.

Results computed in the TC do not fully agree with those of the
FEM analysis (Fig. 14). The highest relative discrepancy is about
29.3%, the lowest is about �36.8%. Nevertheless, the mean dis-
crepancies are 3.8% in CONFIG 1, 4.3% in CONFIG 2, and 1.9%
in CONFIG 3. It can be noted that the effect of the flanges or
thrust is not well captured. Though the model underestimates or
overestimates results, the global trend is quite similar. This means
that the flexibility of the roller is overestimated in our model com-
paratively to the 3D FEM. The reason is that in our model the
deformation of the threads is neglected and the contact direction

is assumed not to vary under loading. Also, it must be pointed out
that the load ratio on the first thread is higher than that computed
in the CC.

5 Discussion

As noted above, the results of the load distribution are in quite
good agreement for the screw–roller contacts and are slightly dif-
ferent for the nut–roller contacts, though the global tendency is
qualitatively well reproduced with respect to the reference model.
The disturbance induced in the area of the thrust and flanges is
well reflected by our hybrid model at the nut–roller interface in
the CC but not in the tensile one. The discrepancies between the
two models at the nut side may be due to the fact that the radial
expansions of components and even the flexural deflection of
threads are neglected in the hybrid model. All this demonstrates
how difficult the topic of load distribution in the PRS is, especially
when the arbitrary shape of the nut must be taken into account.
Since the current model is almost efficient, it can be used for a
parametric study. For instance, it is possible to check whether or
not the load distribution is depended on the external load applied
to the screw shaft.

Next, the load distribution is computed when varying the exter-
nal load in the three main configurations. The purpose is to see
whether and how the load distribution depends on the external
load applied. Figures 15–18 plot the load distribution versus the
external load applied to the screw shaft for both nonflexible and
flexible rollers. As shown by those figures, the load distribution
can be described as “butterfly wings.” The red curve relates to the
first thread, the blue to the second, and the green to the last, the
black curves corresponding to the 17 remaining or intermediate
threads. Considering any external load, it can be seen that the sum
of the distributed loading rates is equal to 100%. For lower exter-
nal loads, the load distribution is quite uniform as the loading rate
on each thread is around 5% (the average) in both tensile and CCs
at the nut–roller and the screw–roller interfaces. Regardless of the

Fig. 13 Load distribution at the nut–roller side in a CC in CONFIGs 1, 2, and 3

Fig. 14 Load distribution at the nut–roller side in a TC in CONFIGs 1, 2, and 3 for a bending flexible roller
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loading direction, when the external load increases, each loading
rate evolves in such a way that the global load distribution
becomes nonuniform or gradual.

Furthermore, the load distribution depends on the external load
and reveals that the first active thread of the screw shaft is the
most loaded one in any configuration as its load ratio is the high-
est. The load ratio increases with the external loading on the shaft

and is similar in all identified configurations. Since the load ratios
of the first six threads increase with the external load, the load
ratios of the last ten threads decrease.

The flexibility of the roller also influences the load distribution
for the nut–roller contacts as well as for the screw–roller contacts,
since the butterfly wings are not the same as the previous ones in
the case of a nonflexible roller. The left “wing” is more split or

Fig. 15 Load distribution against the external load at screw–roller interface in CONFIGs 1, 2, and 3 for a nonflexible roller

Fig. 16 Load distribution against the external load at screw–roller interface in CONFIGs 1, 2, and 3 for a bending flexible
roller

Fig. 17 Load distribution against the external load at nut–roller interface in CONFIGs 1, 2, and 3 for a nonflexible roller
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larger under tensile loading than under compressive loading. This
means that the load distribution is more sensitive to the flexibility
of the roller in the first loading case than in the second. For the
screw, the load on the first thread increases slightly in the TC
whereas, in the CC, it is reduced by about 40% with a nonflexible
roller. For the nut, in the TC, the first active thread remains the
most loaded whether the roller is flexible or not. The load ratio on
the first active thread is almost 1.5 times higher in the flexible
roller case than with the nonflexible roller. In the compressive
loading case, the position of the most loaded thread depends
strongly on the system configuration and the flexibility of the
roller.

6 Conclusion

The objective of this paper has been to present a hybrid model
based on the use of bar, beam, and nonlinear spring elements to
represent a PRS mechanism in order to compute its load distribu-
tion and its axial stiffness under static loading. The model has the
advantage of involving the axial elasticity of the roller and its
bending flexibility under compressive or tensile loading. The cur-
rent model gives good predictions of the axial stiffness and the
load distribution at each side of the roller in different configura-
tions even if the load sharing related to the nut–roller interface
could be optimized. It has been shown that the shape of the nut
has a notable influence on the load distribution as its flanges inter-
act with the contacting threads. Under compressive loading, the
flexibility of the roller has little impact on the load distribution
whereas, under tensile loading, it completely modifies the load
distribution. Also, the BCs have a strong influence on both the
load distribution and the axial stiffness of the mechanism.

A parametric study demonstrated that the load distribution was
not unique but was different at each interface of the roller. The
load distribution is sensitive to the loading cases (tensile or com-
pressive) and depends greatly on the external loading value
applied to the screw shaft as well as on the type of configuration
related to the flanged nut. It is also sensitive to whether the roller
behaves as a pure elastic or a flexible component. Although the
example studied here is limited to an inverted PRS, the presented
approach has been extended to a “standard” PRS for validation.
This model finally appears to be a reliable alternative to 3D FE
analysis and could be used to better understand the static behavior
of PRSs by studying the distribution of pressures and stresses.

This hybrid model has been developed for a lifetime calculation
tool to analyze thousands of loading cycles from an aircraft flight
data collection, which have been previously reduced by a
“rainflow” approach. In these circumstances, it is not possible to
rely on sophisticated 3D FE models as the calculation times
become prohibitive. Thus, it is essential to have a sufficiently

reliable tool available that gives almost instantaneous results so
that choices of designs or architectures can be made quickly and
easily with regard to a preliminary product development phase of
any PRS. Also, this hybrid model is relevant enough and effi-
ciently exploitable to study the influence of parameters based on a
design of experiment.
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Nomenclature

Ca0 ¼ static load capacity
Cv ¼ screw–roller or nut–roller contact
ds ¼ pitch diameter of the screw
E ¼ Young’s modulus of all materials

Eb ¼ Young’s modulus related to a bar element
EPT ¼ total potential energy of the system

F ¼ axial external force acting upon the central screw shaft
Fn ¼ vector of external forces applied to the whole system
FR ¼ reduced nodal external forces
F0 ¼ nodal force applied to the shaft

Gdi ¼ adjacency matrix
I ¼ identity matrix

k, g ¼ subscripts referring to screw–roller and “nut–roller” con-
tacts, respectively

kv ¼ nonlinear stiffness of a spring
k0 ¼ elasticity constant defining a Hertzian contact

k0g ¼ elasticity constant for a screw–roller contact
k0k ¼ elasticity constant for a nut–roller contact
Kb ¼ elementary stiffness matrix of a bar element in the global

basis
Kbe ¼ elementary stiffness matrix of a bar element in the local

basis
KD ¼ stiffness matrix of the nut
Kn ¼ nonlinear global stiffness of the system
Kp ¼ elementary stiffness matrix of a beam element in the

global basis
Kpe ¼ elementary stiffness matrix of a beam element in the

local basis
KR ¼ reduced global stiffness of the system

KRo ¼ stiffness matrix of the roller
KS ¼ stiffness matrix associated with a spring in the global

basis
KSp ¼ stiffness matrix of the multisprings

Fig. 18 Load distribution against the external load at nut–roller interface in CONFIGs 1, 2, and 3 for a bending flexible roller
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KV ¼ stiffness matrix of the screw shaft
lb ¼ length of a bar element
lp ¼ length of a beam element
lv ¼ loading rate
n ¼ constant of value 2/3

nr ¼ number of rollers
ns ¼ number of starts
Nc ¼ number of contacts

p ¼ number of nodes used to discretized the screw shaft
px ¼ axial pitch
pz ¼ lead of the screw
qn ¼ vector of DOF of all nodes of the discrete PRS

qnd ¼ vector of DOF related to the nodes of the springs
qni ¼ vector of DOF related to the nodes of components
Rqg ¼ equivalent curvature radius at nut–roller interface
Rqk ¼ equivalent curvature radius at screw–roller interface
Sb ¼ section related to a bar element
Sp ¼ section related to a beam element
Tb ¼ transformation matrix from local basis to global coordi-

nates system
Tp ¼ transformation matrix from local basis to global coordi-

nates system for a beam element
uc ¼ nodal displacement of the fixed node of the nut

ui, uj ¼ axial nodal displacement of a spring in the global basis
v ¼ subscript that represents k or g

vi, vj ¼ radial nodal displacement of a spring in the global basis
vp, vg ¼ subscripts referencing nodes on which BCs are set
wi, wj ¼ nodal displacement of a spring in the local basis

anv ¼ pressure angle
bv ¼ lead angle of the screw or the nut
lv ¼ friction coefficient at screw–roller or nut–roller

interfaces
/b ¼ angular deviation between the local and the global coor-

dinate systems
/p ¼ angular deviation between the local and the global coor-

dinates systems for a beam element
wg ¼ generalized angular parameter for a spring at a nut–roller

interface
wk ¼ generalized angular parameter for a spring at a

screw–roller interface
wv ¼ generalized angular parameter for a spring at a contacting

interface

Appendix

Elementary stiffness matrix of the bar in the local coordinates
system

Kbe ¼
EbSb

lb

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
664

3
775 (A1)

Stiffness matrix Kb in the global coordinates system

Kb ¼ Tt
b /bð Þ � Kbe½ � � Tb /bð Þ (A2)

The transformation matrix Tb from the local basis to global coor-
dinates system

Tb /bð Þ ¼

cos /b sin /b 0 0

�sin /b cos /b 0 0

0 0 cos /b sin /b

0 0 �sin /b cos /b

2
664

3
775 (A3)

Elementary stiffness matrix Kpe of the beam in the local coordi-
nates system

Kpe ¼

EpSp

lp
0 0 �EpSp

lp
0 0

0
12EpIp

l3p

6EpIp

l2
p

0 �12EpIp

l3
p

6EpIp

l2
p

0
6EpIp

l2p

4EpIp

lp
0 �6EpIp

l2
p

2EpIp

lp

�EpSp

lp
0 0

EpSp

lp
0 0

0 �12EpIp

l3
p

�6EpIp

l2p
0

12EpIp

l3p
�6EpIp

l2p

0 �6EpIp

l2
p

2EpIp

lp
0 �6EpIp

l2
p

4EpIp

lp

2
6666666666666666666666664

3
7777777777777777777777775

(A4)

Stiffness matrix Kp of the beam element, in the global coordinates
system

Kp ¼ Tp
t /p

� �
� Kpe½ � � Tp /p

� �
(A5)

Matrix Tp for transformation from the local coordinates system to
the global coordinates system

Tp /p

� �
¼

cos /p sin /p 0 0 0 0

�sin /p cos /p 0 0 0 0

0 0 1 0 0 0

0 0 0 cos /p sin /p 0

0 0 0 �sin /p cos /p 0

0 0 0 0 0 1

2
6666664

3
7777775

(A6)
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